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Deviations from the random distribution of hydrogen isotopes among isotopic species of liquid and vapor
water (the rule of the geometric mean) were critically assessed theoretically and experimentally from the
triple to critical point of water. A third-order polynomial equation of the classical near-critical expansion was
used to accurately describe the liquid-vapor isotope fractionation of H2O and D2O on the basis of their
equations of state. It was found that experimental data for the enthalpy of mixing of H2O-D2O can be used
to calculate accurately the deviation from the rule of the geometric mean in liquid and vapor water, ln(KD(v)/
KD(l)). A new equation obtained in this study shows that the value of ln(KD(v)/KD(l)) smoothly decreases from
+0.009 to 0 with increasing temperature from the triple to critical temperature of water. In contrast, the
equation available in the literature and that derived from mass spectrometric measurements of liquid-vapor
partitioning of H2O and HDO show complex behavior, including maximum, minimum, and crossover.

1. Introduction

Isotopic self-exchange reactions of water in gaseous and liquid
phases have been studied by a number of investigators over
the past several decades. The deviation from the rule of the
geometric mean is one of the main features of these reactions.
It is well-known that the disproportionation reaction (i.e., H2O
+ D2O T 2HDO) in the liquid and gaseous phases does not
obey the rule of the geometric mean (KD * 4). In addition, the
equilibrium hydrogen isotope fractionation factor between liquid
and gaseous water for HDO-H2O deviates from the square root
of that for D2O-H2O. Although a number of experimental
studies have been conducted, our understanding of the dispro-
portionation reactions at elevated temperatures is still very
limited. Furthermore, the formalism for expressing deviations
from the rule of the geometric mean in the literature is valid
only at low temperatures as discussed below. Here, we re-
examine these reactions from the triple to critical point of water
along the liquid-vapor boundary.

2. Liquid -Vapor Partitioning of Hydrogen Isotopic
Water

Liquid-vapor partitioning of hydrogen isotopic water mol-
ecules (H2O, HDO, and D2O) has been investigated by two
different experimental techniques. One is mass spectrometric
determinations of HDO/H2O ratios of natural abundances (HDO/
H2O ≈ 0.000 30) between coexisting liquid and vapor phases.
These measurements directly provide the equilibrium constant
of the following reaction, assuming ideal mixing of H2O-HDO

Many investigators have determined the value ofKL-V(HDO)

over a wide range of temperatures. The most comprehensive
work is that of Horita and Wesolowski,1 who reported a global
equation that described eq 1 from the triple to critical temper-
ature of the solvent H2O (Figure 1).

The other technique makes use of the differences in the
saturated vapor pressures of pure isotopic waters (H2O and
D2O), i.e., vapor pressure isotope effects (VPIE). Bigeleisen2,3

derived an equation that relates VPIE determined from two pure
isotopic species separately and the equilibrium constant of the
following reaction at infinite dilution of one isotopic species
(D2O) in another (H2O)

whereP andP* are the saturation vapor pressures for solvent
(H2O) and solute (D2O), respectively.Vg andVl are the molar
volumes of gas and liquid phases of the solvent, respectively.
R is the universal gas constant, andT is absolute temperature
(K). From eq 3, we can calculate the liquid-vapor fractionation
factor between D2O and H2O using VPIE, which is available
from the literature4 or can be calculated from the equation of
state (EOS) of H2O and D2O.5,6 Japas et al.7 provided a more
rigorous derivation of eq 3. Japas et al.7 and Alvarez et al.8

also accurately described near-critical asymptotic behavior using
the classical near-critical expansion

whereKL-V is the liquid-vapor equilibrium constant,Fl and
Fcr are liquid and critical densities (mol/m3), A0

a and A1
a are

coefficients, andTcr is the critical temperature, all for pure
solvent H2O along the liquid-vapor boundary. They showed
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KL-V(HDO): H2Oliquid + HDOvaporT HDOliquid + H2Ovapor

(1)

KL-V(D2O): H2Oliquid + D2OvaporT D2Oliquid + H2Ovapor (2)

-ln KL-V(D2O) ) (PVg

RT
-

PVl

RT)ln P*
P

(3)

T ln KL-V/(Fl - Fcr) ) A0
a + A1

a(T - Tcr) (4)
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that the range where the termRT ln KL-V varies linearly as a
function of Fl extends approximately 20 K beyond the near-
critical regions. To describe the liquid-vapor isotope distribu-
tion down to room temperature, we expanded eq 4, including
the second- and third-power terms of (1- T/Tcr)

whereA0, A1, A2, andA3 are coefficients. Equation 5 provides
the theoretical temperature dependence in the vicinity of the
critical point. A different expression for lnKD valid over all
the range of existence of liquid water has been given by Japas
et al.7 We fitted the values ofKL-V(D2O) to eq 5, which were
calculated from the EOS of H2O and D2O5,6 using eq 3 (Table
1). Errors in EOS for D2O6 are much larger than those for H2O.5

Consequently, our results are not significantly affected if, instead
of EOS for H2O,5 the current standard EOS by Wagner and
Pruss9 is used. Results of calculations are shown in a plot of (1
- T/Tcr) vs T ln K/(Fl - Fcr) (Figure 1), which was used
previously.7 We also fitted extensive mass spectrometric data
of KL-V(HDO) from room temperature to near the critical point
obtained by Horita and Wesolowski1 to eq 5 (Figure 1 and Table
1). As shown in Figure 1, the polynomial expansion of eq 5
provides a correct description for the temperature dependence
of equilibrium hydrogen isotope fractionation in the range from
room to the critical temperature.

3. Disproportionation Reaction of Hydrogen Isotopic
Water

The two equilibrium constantsKL-V(HDO) andKL-V(D2O) are
related by two disproportionation reactions in the vapor and
liquid phases

through the relationship

This simple relationship holds for the entire range of isotopic
composition (0e D/(H + D) e 1). It is well-known that
hydrogen isotope disproportionation reactions of eqs 6 and 7
do not obey the rule of the geometric mean (i.e.,KD(l),KD(v) <
4). In addition, the two constants are not equal (KD(v)/KD(l) *
1). Rolston and Gale11 showed that the deviation of the ratio
KD(v)/KD(l) from unity is the reason for an unusual dependence
of liquid water-H2 isotope fractionation factor on deuterium
contents in the system. Equation 8 can be rewritten as

Van Hook12,13 used an equation with a different formalism

On the basis of experimental data on vapor pressures and
boiling and freezing points in the literature, Van Hook12,13

reported a constant value ofr (0.09( 0.03) over the temperature
range from 233 to 473 K.

Since values of bothKL-V(D2O) and KL-V(HDO) are now
available over the entire range of the liquid-vapor boundary
of water (Figure 1), one can re-examine the deviation from the
rule of the geometric mean. A straightforward method is to
obtain a polynomial equation for the value ofKL-V(D2O) -
2KL-V(HDO)from the two equations ofKL-V(D2O) andKL-V(HDO)

(Table 1). Unfortunately, this approach resulted in large
uncertainties, because the deviation from the rule of the
geometric mean,KL-V(D2O) - 2KL-V(HDO), is small compared
to the two values ofKL-V(D2O) and 2KL-V(HDO). An alternative
approach is to use experimental data for the enthalpy of the
disproportionation reaction (H2O + D2O T 2HDO). From eqs
5 and 9, the deviation from the rule of the geometric mean can
be expressed as

Differentiation of eq 11 with respect to temperature, using
the thermodynamic relationship∆H ) -RT2(∂/∂T ln K)P gives

where ∆Hv and ∆Hl are enthalpies of reactions 6 and 7,
respectively.

Simonson14 measured the value of∆Hl experimentally from
310 to 673 K and represented these experimental data by the
following equation (Table 2):

whereq1 ) -32.1072 (K),q2 ) 1.879 89 (K2), q3 ) 1.529 02
× 10-4, and q4 ) -3.213 29 × 10-2. R is the isobaric
expansivity of H2O, which can be calculated from the EOS of
Kestin et al.6 ∆Hv can be obtained from the reduced isotopic

Figure 1. The third-order polynomial to represent the liquid-vapor
hydrogen isotope fractionation (eq 5 and Table 1).

T ln KL-V(D2O)/(Fl - Fcr) ) A0 + A1(1 - T/Tcr) +

A2(1 - T/Tcr)
2 + A3(1 - T/Tcr)

3 (5)

KD(v): H2Ovapor+ D2OvaporT 2HDOvapor (6)

KD(l): H2Oliquid + D2Oliquid T 2HDOliquid (7)

KL-V(D2O) ) KL-V(HDO)
2

KD(v)

KD(l)
(8)

ln KL-V(D2O) ) 2 ln KL-V(HDO) + ln(KD(v)/KD(l)) (9)

ln KL-V(D2O) ) (2 - r)ln KL-V(HDO);

r ) -
ln(KD(v)/KD(l))

ln KL-V(HDO)
(10)

ln KD(l) - ln KD(v) ) 2 ln KL-V(HDO) - ln KL-V(D2O) )

(Fl - Fcr)/T[Bo + B1(1 - T/Tcr) + B2(1 - T/Tcr)
2 +

B3(1 - T/Tcr)
3] (11)

∆Hv - ∆Hl ) T2 ∂

∂T
{(Fl - Fcr)/T[B0 + B1(1 - T/Tcr) +

B2(1 - T/Tcr)
2 + B3(1 - T/Tcr)

3]}P (12)

∆Hl ) -R{q1 + 3q2/T
2 + q3(RT2) - q4T} (13)
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partition function ratio calculated by Bron et al.15 or Richet et
al.,16 assuming ideal-gas behavior for vapor phase (Table 2).
Thus, calculations of the left-hand and right-hand sides of eq
12 from 278 to 600 K with a 1 K step can provide a set of
linear equations, which were then used to solve for the four
unknown coefficientsBi by the least-squares method (Table 3).
A good agreement in the value of∆Hl between Simonson’s
results14 and our calculations from eq 12 (Table 2) shows that
our approach provides adequate description for experimental
data on the enthalpy of reaction 7. From eq 11, and coefficients
in Tables 1 and 3, we can obtain the third-order polynomial for
the KL-V(HDO)

4. Results and Discussion

A comparison among different formalisms for representing
the deviation from the rule of the geometric mean in the
coordinate system of 2KL-V(HDO) - KL-V(D2O) versus temperature
is given in Figure 2. For the value ofKL-V(HDO), four equations
are compared: (a) the third-order polynomial based on the mass
spectrometric data (Table 1), (b) the best-fit empirical equation
of Horita and Wesolowski1 based on the mass spectrometric
data, (c) the third-order polynomial (eq 11) based on calorimetric
measurements of enthalpy by Simonson,14 and (d) Van Hook’s12,13

formalism, lnKL-V(HDO) ) ln KL-V(D2O)/1.91(eq 10). In all cases,
ln KL-V(D2O) from eq 5 and Table 1 was used, which was in
turn calculated from EOS of Kestin et al.5,6 and eq 3. As shown
in Figure 2, overall agreements among the four equations are
excellent. The results that were obtained from mass spectro-
metric data for the vapor-liquid system show complex behav-
iors with maxima and minima, suggesting that the value of∆Hv

- ∆Hl in eq 12 changes its sign. On the other hand, the curve
(eq 11), which is based on eq 5 and the enthalpy measurements
of Simonson,14 shows a smooth temperature dependence (posi-
tive values of∆Hv - ∆Hl and lnKD(v) - ln KD(l)), approaching
a zero value at the critical temperature of H2O. The equation
of Van Hook’s12,13 formalism agrees quantitatively with that
based on the calorimetric measurements within errors. Thus,
this new equation appears to best describe the temperature
dependency of the deviation from the rule of the geometric mean
(ln KD(v) - ln KD(l)) from the triple to critical point of H2O.

A comparison is also made for the value of lnKL-V(HDO) in
Figure 3. The equation based on the rule of the geometric mean
(ln KL-V(D2O)/2) always underestimates that of our approach for
ln KL-V(HDO) (eq 14). The best-fit empirical equation based on
mass spectrometric data1 starts to deviate significantly from eq
14 above 580 K, because of the limited data with large errors
in this temperature range. Van Hook’s approach (lnKL-V(HDO)

) ln KL-V(D2O)/1.91) agrees well with Horita and Wesolowski’s

TABLE 1: Results of Fitting of KL-V(D2O) and KL-V(HDO) to Eq 5

103T ln KL-V(D2O)/(Fl - Fcr) 2 × 103T ln KL-V(HDO)/(Fl - Fcr) difference

coefficient
value

m3 K/mol
errora (σ)
m3 K/mol

value
m3 K/mol

errora (σ)
m3 K/mol

value
m3 K/mol

errora (σ)
m3 K/mol

A0 -20.114 0.112 -27.620 0.168 7.505 0.202
A1 98.649 4.682 167.542 17.933 -68.893 18.534
A2 -187.260 21.830 -331.779 175.635 144.520 176.987
A3 551.540 46.790 640.072 164.371 -88.532 170.901

a Errors reflect uncertainties in the least-squares fitting.

TABLE 2: Comparison of Enthalpies of Reactions 6 and 7

102∆Hl/RT

T (K) this study Simonson (1990) 102∆Hv/RT

298.15 5.4249 5.4264 7.9182
323.15 5.0004 5.0489 7.0341
348.15 4.6262 4.6692 6.2538
373.15 4.2834 4.3014 5.5667
398.15 3.9623 3.9519 4.9621
423.15 3.6563 3.6234 4.4299
448.15 3.3611 3.3164 3.9609
473.15 3.0740 3.0302 3.5466
498.15 2.7942 2.7634 3.1800
523.15 2.5220 2.5145 2.8547
548.15 2.2598 2.2811 2.5654
573.15 2.0123 2.0604 2.3074
598.15 1.7889 1.8456 2.0768
623.15 1.6108 1.6075 1.8702

TABLE 3: Polynomial Coefficients in Eq 11 for Calculating
the Deviation from the Rule of the Geometric Mean

coefficients
value

103 m3 K/mol
errora (1σ)
m3 K/mol

B0 0 0.09576
B1 5.6938 0.14176
B2 -18.7921 0.41563
B3 35.2445 0.44635

a Errors reflect uncertainties from the least-squares fitting.

103 ln KL-V(HDO) ) -10.0572+ 52.1716(1- T/Tcr) -

103.0257(1- T/Tcr)
2 + 293.3924(1- T/Tcr)

3 (14)

Figure 2. Comparison of different approaches to evaluate the deviation
from the rule of the geometric mean. Open squares are obtained from
ln KL-V(D2O) based on the EOS5,6 and from ln KL-V(HDO) of mass
spectrometric data.1,10 (- - -) Polynomial equation of the classical near-
critical expansion based on mass spectrometric experiments. (-‚ -)
Horita and Wesolowski1 best-fit curve. (s) Polynomial equation of
the classical near-critical expansion based on Simonson’s14 calorimetric
data. (- ‚‚‚) Van Hook’s12,13 formalism.
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experimental results1 and our new formalism (eq 14) at
temperatures up to 370 K (Figure 3a). With increasing temper-
ature to 473 K, the Van Hook formalism approached the
equation based on the rule of the geometric mean.

VPIE data of D2O and H2O obtained from the EOS5,6 give a
crossover (lnKL-V(D2O) ) 0) temperature of about 494 K (221
°C), in excellent agreement with direct measurements.17 For the
HDO-H2O fractionation factor (lnKL-V(HDO)), Horita and
Wesolowski1 obtained a crossover temperature of 502( 13 K
(229 ( 13 °C). Our new formalism (eq 14) gives a crossover
temperature of 500 K (227°C), which is in an agreement with
the experimental data of lnKL-V(HDO). The small difference (6-8
K) in the crossover temperature between the two values of ln
KL-V(D2O) and lnKL-V(HDO) is derived from the term ln (KD(v)/
KD(l))in eq 9.

In conclusion, we have developed a third-order polynomial
equation, which provides correct near-critical asymptotic be-
havior, for representing the deviation from the rule of the
geometric mean, ln (KD(v)/KD(l)) (eq 11), and the liquid-vapor
isotope fractionation lnKL-V(HDO) (eq 14) over the entire range
of the liquid-vapor boundary. Experimental data of the enthalpy
of H2O-D2O mixing14 were used instead of mass spectrometric
data of lnKL-V(HDO), along with the EOS of H2O and D2O5,6

and the calculated reduced partition function ratio for gaseous
isotopic waters.15 Our new equations for ln(KD(v)/KD(l)) and ln
KL-V(HDO) can accurately represent the temperature dependencies
of these values over the entire liquid-vapor boundary of water.
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