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Isotopic Self-Exchange Reactions of Water: Evaluation of the Rule of the Geometric Mean
in Liquid —Vapor Isotope Partitioning
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Deviations from the random distribution of hydrogen isotopes among isotopic species of liquid and vapor
water (the rule of the geometric mean) were critically assessed theoretically and experimentally from the
triple to critical point of water. A third-order polynomial equation of the classical near-critical expansion was
used to accurately describe the liguidapor isotope fractionation of 4 and DO on the basis of their
equations of state. It was found that experimental data for the enthalpy of mixingdef BLO can be used

to calculate accurately the deviation from the rule of the geometric mean in liquid and vapor witgg,/In(
Kbg)). A new equation obtained in this study shows that the value &fl(Kp()) smoothly decreases from
+0.009 to 0 with increasing temperature from the triple to critical temperature of water. In contrast, the
equation available in the literature and that derived from mass spectrometric measurements-e¥éigard
partitioning of HO and HDO show complex behavior, including maximum, minimum, and crossover.

1. Introduction Many investigators have determined the valuépfypo)
over a wide range of temperatures. The most comprehensive

Isotopic self-exchange_reactlons of water in gaseous and I|qU|dWork is that of Horita and Wesolowskiwho reported a global
phases have been studied by a number of investigators over

the past several decades. The deviation from the rule of theequatlon that described eq 1 from the triple to critical temper-

eometric mean is one of the main features of these reactions ature of the solvent ¢ (Figure 1).
9 " The other technique makes use of the differences in the

It is well-known that the disproportionation reaction (i.ep(H saturated vapor pressures of pure isotopic water© (Bind

*+ D20 = 2HDO) in the liquid and gaseous phases does not D,0), i.e., vapor pressure isotope effects (VPIE). Bigeléiden

Zbﬁi){ilct)krliirLULe g:;heenggggeg'ﬁ gﬁm;n4f)éé?o?dbg$\?enént?ieui d derived an equation that relates VPIE determined from two pure
q yarog P q isotopic species separately and the equilibrium constant of the

and gaseous water for HDEM;0 deviates from the square root following reaction at infinite dilution of one isotopic species
of that for D,O—H,0. Although a number of experimental (D,0) in another (HO)

studies have been conducted, our understanding of the dispro-
portionation reactions at elevated temperatures is still very g “ H.O.. .. +D.O
limited. Furthermore, the formalism for expressing deviations - (P20 ~ 2~ lauid = =2
from the rule of the geometric mean in the literature is valid

only at low temperatures as discussed below. Here, we re- —In K, _vip.o) = (_ -
examine these reactions from the triple to critical point of water ©:0) RT RT,
along the liquid-vapor boundary.

apore DZoliquid + Hzovapor (2)

PV, PV *
| e

whereP andP* are the saturation vapor pressures for solvent
(H20) and solute (RO), respectivelyVy andV; are the molar
volumes of gas and liquid phases of the solvent, respectively.
R is the universal gas constant, ahds absolute temperature
Liquid—vapor partitioning of hydrogen isotopic water mol-  (K). From eq 3, we can calculate the liquigapor fractionation
ecules (HO, HDO, and DO) has been investigated by two factor between BO and HO using VPIE, which is available
different experimental techniques. One is mass spectrometricfrom the literaturé or can be calculated from the equation of
determinations of HDO/}O ratios of natural abundances (HDO/  state (EOS) of KO and BO.>6 Japas et al.provided a more
H,0 ~ 0.000 30) between coexisting liquid and vapor phases. rigorous derivation of eq 3. Japas et’and Alvarez et af.
These measurements directly provide the equilibrium constantalso accurately described near-critical asymptotic behavior using

2. Liquid —Vapor Partitioning of Hydrogen Isotopic
Water

of the following reaction, assuming ideal mixing o§G+HDO the classical near-critical expansion
KL*V(HDO): HZOquuid + HDovapore HI:)Oliquid + HZOvapor Tin KLfvl(pI - Pcr) = Ag + A:aLl(T - Tcr) (4)
1)

whereK| _y is the liquid-vapor equilibrium constanip and
C " o a a
* Corresponding author. E-mail: polyakov@geokhi.ru. Per ar.e. liquid and c.rltlcal dep.SItleS (molﬁm Ao and A are
t Russian Academy of Science. coefficients, andT is the critical temperature, all for pure
*Oak Ridge National Laboratory. solvent HO along the liquig-vapor boundary. They showed
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Figure 1. The third-order polynomial to represent the ligticapor
hydrogen isotope fractionation (eq 5 and Table 1).

that the range where the terRil In K__y varies linearly as a
function of p; extends approximately 20 K beyond the near-
critical regions. To describe the liquidrapor isotope distribu-
tion down to room temperature, we expanded eq 4, including
the second- and third-power terms of {1T/T,)

Tin KL—V(DZO)/(pI = pe) =Agt A1 TIT) +
AL = TIT,)? + A1 = TIT,,)* (5)

whereAy, A1, A, andAg are coefficients. Equation 5 provides
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K

2 D(v)
KL*V(DZO) = KL*V(HDO)K(D ®)
This simple relationship holds for the entire range of isotopic
composition (0= D/(H + D) =< 1). It is well-known that
hydrogen isotope disproportionation reactions of eqs 6 and 7
do not obey the rule of the geometric mean (it&y),Kow) <
4). In addition, the two constants are not equ&b{/Kpg =
1). Rolston and Galé showed that the deviation of the ratio
Kowy/Kpgy from unity is the reason for an unusual dependence
of liquid water—H, isotope fractionation factor on deuterium
contents in the system. Equation 8 can be rewritten as

InK__vp,0)= 2 INK_ypoy T IN(Kp/Kpg) — (9)

Van Hook213ysed an equation with a different formalism

In KL-vip,00 = (2= 1IN K _ynpoy,
_ _ln(KD(v)/ KD(I))

(10)
In Ky _vrpo)

On the basis of experimental data on vapor pressures and
boiling and freezing points in the literature, Van Hé®k
reported a constant value 10{0.09+ 0.03) over the temperature
range from 233 to 473 K.

Since values of bothK|—yp,0) and K_-ypoy are now
available over the entire range of the liguidapor boundary
of water (Figure 1), one can re-examine the deviation from the
rule of the geometric mean. A straightforward method is to
obtain a polynomial equation for the value Bf -vp,0) —
2K —v(Hpoyfrom the two equations df| —v(p,0) and K -vpo)
(Table 1). Unfortunately, this approach resulted in large
uncertainties, because the deviation from the rule of the
geometric meanK,—v(p,0) — 2KL-v(Hpo), is small compared

the theoretical temperature dependence in the vicinity of the to the two values oKy ,0) and K -vtpo). An alternative

critical point. A different expression for |Kp valid over all

approach is to use experimental data for the enthalpy of the

the range of existence of liquid water has been given by Japasdisproportionation reaction @@ + D,O < 2HDO). From eqgs

et al” We fitted the values oK_v(p,0) to eq 5, which were
calculated from the EOS of 0 and DO>6 using eq 3 (Table
1). Errors in EOS for BO® are much larger than those fop®1>

5 and 9, the deviation from the rule of the geometric mean can
be expressed as

Consequently, our results are not significantly affected if, instead In Koo — In Kpw) =2 In KL -v(Hpo) ~ In KL—V(DZO) =

of EOS for HO,? the current standard EOS by Wagner and
Prusgis used. Results of calculations are shown in a plot of (1
— T/Me) vs T In Ki(pr — per) (Figure 1), which was used
previously? We also fitted extensive mass spectrometric data
of KL-vpoy from room temperature to near the critical point
obtained by Horita and Wesolowsko eq 5 (Figure 1 and Table
1). As shown in Figure 1, the polynomial expansion of eq 5

provides a correct description for the temperature dependenceAH, — AH,

of equilibrium hydrogen isotope fractionation in the range from
room to the critical temperature.

3. Disproportionation Reaction of Hydrogen Isotopic
Water

The two equilibrium constants, —vpo) and K -v(p,oy are
related by two disproportionation reactions in the vapor and
liquid phases

KD(v): Hzovapor - 2HDOvatpor

+D,0

vapor

(6)
Ko H2Oliquia T D2Oiiquia <> 2HDOjquiq (7)

through the relationship

(pl - pcr)/T[Bo + Bl(l - T/Tcr) + BZ(l - T/Tcr)2 +
By(1— T/T,)"] (11)

Differentiation of eq 11 with respect to temperature, using
the thermodynamic relationshipH = —RT%(3/0T In K)p gives

0
S a_T{ (o, — pe)/TIBy + By(1 — T/T,) +
By(1 — T/Te)* + By(1 — TIT) I} (12)

where AH, and AH, are enthalpies of reactions 6 and 7,
respectively.
Simonsoi* measured the value d&H, experimentally from

310 to 673 K and represented these experimental data by the
following equation (Table 2):

AH, = —R{q; + 3q/T* + g50T?) — q, T} (13)
whereq; = —32.1072 (K),qz = 1.879 89 (K), gz = 1.529 02
x 1074, and g4 = —3.21329 x 1072 « is the isobaric
expansivity of HO, which can be calculated from the EOS of
Kestin et al® AH, can be obtained from the reduced isotopic
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TABLE 1: Results of Fitting of KL*V(DZO) and KL*V(HDO) to Eq 5

10°T In KL—V(DZO)/(PI — Pcr) 2 x 10T In KL—V(HDO)/(PI — Pcr) difference
value error (o) value error (o) value error (o)
coefficient m3K/mol m3 K/mol m3K/mol méK/mol m3K/mol m3K/mol
Ao —20.114 0.112 —27.620 0.168 7.505 0.202
Aq 98.649 4.682 167.542 17.933 —68.893 18.534
Az —187.260 21.830 —331.779 175.635 144.520 176.987
Az 551.540 46.790 640.072 164.371 —88.532 170.901

aErrors reflect uncertainties in the least-squares fitting.

TABLE 2: Comparison of Enthalpies of Reactions 6 and 7 formalism, InK_-vpo) = In KL-v(p,0y/1.91(eq 10). In all cases,
1PAH/RT In KL—vp,0) from eq 5 and Table 1 v;gs used, which was in
- X turn calculated from EOS of Kestin et#t.and eq 3. As shown
T(K) this study Simonson (1990) 18H/RT in Figure 2, overall agreements among the four equations are
298.15 5.4249 5.4264 7.9182 excellent. The results that were obtained from mass spectro-
323.15 5.0004 5.0489 7.0341 metric data for the vaperliquid system show complex behav-
348.15 4.6262 4.6692 6.2538 iors with maxima and minima, suggesting that the valualdf
373.15 4.2834 4.3014 5.5667 . . .
398.15 39623 39519 4.9621 — AH, in eq 12_ changes its sign. On the other hand, the curve
423.15 3.6563 3.6234 4.4299 (eq 11), which is based on eq 5 and the enthalpy measurements
448.15 3.3611 3.3164 3.9609 of Simonsort* shows a smooth temperature dependence (posi-
473.15 3.0740 3.0302 3.5466 tive values ofAH, — AH; and InKp) — In Kp)), approaching
498.15 2.7942 2.7634 3.1800 a zero value at the critical temperature ofH The equation
523.15 2.5220 2.5145 2.8547 of Van Hook’$212 formalism agrees quantitatively with that
548.15 2.2598 22811 25654 based on the calorimetric measurements within errors. Thus,
573.15 2.0123 2.0604 2.3074 . : .
598 15 17889 1.8456 20768 this new equation appears to best describe the temperature
623.15 1.6108 1.6075 1.8702 dependency of the deviation from the rule of the geometric mean
(In Kpwy) — In Kpgy) from the triple to critical point of HO.
TABLE 3 _Polynomial Coefficients in Eq 11_for Calculating A comparison is also made for the value ofKr_],V(HDO) in
the Deviation from the Rule of the Geometric Mean Figure 3. The equation based on the rule of the geometric mean
value errof (10) (In KL-v(p,0)/2) always underestimates that of our approach for
coefficients 10*m*K/mol m3K/mol In KL-vpoy (eq 14). The best-fit empirical equation based on
Bo 0 0.09576 mass spectrometric datstarts to deviate significantly from eq
B: 5.6938 0.14176 14 above 580 K, because of the limited data with large errors
B, —18.7921 0.41563 in this temperature range. Van Hook’s approachi(inypo)
Bs 35.2445 0.44635 = In K_—v(p,0y/1.91) agrees well with Horita and Wesolowski's
aErrors reflect uncertainties from the least-squares fitting. 12
partition function ratio calculated by Bron et’&lor Richet et 1 __ 3

al. 18 assuming ideal-gas behavior for vapor phase (Table 2).
Thus, calculations of the left-hand and right-hand sides of eq
12 from 278 to 600 K wit a 1 K step can provide a set of
linear equations, which were then used to solve for the four
unknown coefficient®; by the least-squares method (Table 3). 6—
A good agreement in the value dfH, between Simonson’s
resultd4 and our calculations from eq 12 (Table 2) shows that
our approach provides adequate description for experimental * =
data on the enthalpy of reaction 7. From eq 11, and coefficients = 2 [
in Tables 1 and 3, we can obtain the third-order polynomial for
the KL —vHpo)

o
[

100K, 1,

HDO

210°Ink,
T

0
10°In K_ypoy = —10.0572+ 52.1716(1— T/T,) — 2
103.0257(1— T/T,)® + 293.3924(1— T/T,)® (14) B

4 e @

4. Results and Discussion i D| | | | | | |
-6 1 1 1 1 1 1 1 1

A comparison among different formalisms for representing 250 300 350 400 450 500 550 600 650
the deviation from the rule of the geometric mean in the T.K

coordinate system of o) — KL-v(p,0) vVersus temperature  Figure 2. Comparison of different approaches to evaluate the deviation
is given in Figure 2. For the value &% —vpo), four equations from the rule of the geometric mean. Open squares are obtained from
are compared: (@) the third-order polynomial based on the mass K.-vio:0) based on the EG8 and from In Ki-vino) of mass
spectrometric data (Table 1), (b) the best-fit empirical equation spectrometric data® (- - -) Polynomial equation of the classical near-

f . | ki . critical expansion based on mass spectrometric experiments) (-
of Horita and Wesolowskibased on the mass spectrometric  orita and Wesolowskibest-fit curve. £) Polynomial equation of

data, (c) the third-order polynomial (eq 11) based on calorimetric the classical near-critical expansion based on Simonsarimetric
measurements of enthalpy by Simonsband (d) Van Hooks13 data. € +++) Van Hook'$213formalism.
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Figure 3. Comparisons of different formalisms for representing the value Kf Inwpo): (a) below 473 K and (b) from 473 K to critical temperature.
(—) This study, classical near-critical expansion based on calorimetric data (Simonson, ref 14). (- - -) The rule of the geometric m&&m (-
Hook’s formalism!213(— --+) Best-fit curve of mass spectrometric d&@ Experimental mass spectrometric measurements (Horita and Wesdlowski
and Majoubé&).
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